165 research outputs found

    Facial Curvature Detects and Explicates Ethnic Differences in Effects of Prenatal Alcohol Exposure

    Get PDF
    Background Our objective is to help clinicians detect the facial effects of prenatal alcohol exposure by developing computer-based tools for screening facial form. Methods All 415 individuals considered were evaluated by expert dysmorphologists and categorized as (i) healthy control (HC), (ii) fetal alcohol syndrome (FAS), or (iii) heavily prenatally alcohol exposed (HE) but not clinically diagnosable as FAS; 3D facial photographs were used to build models of facial form to support discrimination studies. Surface curvature-based delineations of facial form were introduced. Results (i) Facial growth in FAS, HE, and control subgroups is similar in both cohorts. (ii) Cohort consistency of agreement between clinical diagnosis and HC-FAS facial form classification is lower for midline facial regions and higher for nonmidline regions. (iii) Specific HC-FAS differences within and between the cohorts include: for HC, a smoother philtrum in Cape Coloured individuals; for FAS, a smoother philtrum in Caucasians; for control-FAS philtrum difference, greater homogeneity in Caucasians; for control-FAS face difference, greater homogeneity in Cape Coloured individuals. (iv) Curvature changes in facial profile induced by prenatal alcohol exposure are more homogeneous and greater in Cape Coloureds than in Caucasians. (v) The Caucasian HE subset divides into clusters with control-like and FAS-like facial dysmorphism. The Cape Coloured HE subset is similarly divided for nonmidline facial regions but not clearly for midline structures. (vi) The Cape Coloured HE subset with control-like facial dysmorphism shows orbital hypertelorism. Conclusions Facial curvature assists the recognition of the effects of prenatal alcohol exposure and helps explain why different facial regions result in inconsistent control-FAS discrimination rates in disparate ethnic groups. Heavy prenatal alcohol exposure can give rise to orbital hypertelorism, supporting a long-standing suggestion that prenatal alcohol exposure at a particular time causes increased separation of the brain hemispheres with a concomitant increase in orbital separation

    Adolescent Brain Cognitive Development (ABCD) Study Linked External Data (LED): Protocol and practices for geocoding and assignment of environmental data

    Get PDF
    Our brain is constantly shaped by our immediate environments, and while some effects are transient, some have long-term consequences. Therefore, it is critical to identify which environmental risks have evident and long-term impact on brain development. To expand our understanding of the environmental context of each child, the Adolescent Brain Cognitive Development (ABCD) Study® incorporates the use of geospatial location data to capture a range of individual, neighborhood, and state level data based on the child\u27s residential location in order to elucidate the physical environmental contexts in which today\u27s youth are growing up. We review the major considerations and types of geocoded information incorporated by the Linked External Data Environmental (LED) workgroup to expand on the built and natural environmental constructs in the existing and future ABCD Study data releases. Understanding the environmental context of each youth furthers the consortium\u27s mission to understand factors that may influence individual differences in brain development, providing the opportunity to inform public policy and health organization guidelines for child and adolescent health

    Imaging the Impact of Prenatal Alcohol Exposure on the Structure of the Developing Human Brain

    Get PDF
    Prenatal alcohol exposure has numerous effects on the developing brain, including damage to selective brain structure. We review structural magnetic resonance imaging (MRI) studies of brain abnormalities in subjects prenatally exposed to alcohol. The most common findings include reduced brain volume and malformations of the corpus callosum. Advanced methods have been able to detect shape, thickness and displacement changes throughout multiple brain regions. The teratogenic effects of alcohol appear to be widespread, affecting almost the entire brain. The only region that appears to be relatively spared is the occipital lobe. More recent studies have linked cognition to the underlying brain structure in alcohol-exposed subjects, and several report patterns in the severity of brain damage as it relates to facial dysmorphology or to extent of alcohol exposure. Future studies exploring relationships between brain structure, cognitive measures, dysmorphology, age, and other variables will be valuable for further comprehending the vast effects of prenatal alcohol exposure and for evaluating possible interventions

    Longitudinal Impact of Childhood Adversity on Early Adolescent Mental Health During the COVID-19 Pandemic in the ABCD Study Cohort: Does Race or Ethnicity Moderate Findings?

    Get PDF
    Background During the COVID-19 pandemic in the United States, mental health among youth has been negatively affected. Youth with a history of adverse childhood experiences (ACEs), as well as youth from minoritized racial-ethnic backgrounds, may be especially vulnerable to experiencing COVID-19–related distress. The aims of this study are to examine whether exposure to pre-pandemic ACEs predicts mental health during the COVID-19 pandemic in youth and whether racial-ethnic background moderates these effects. Methods From May to August 2020, 7983 youths (mean age, 12.5 years; range, 10.6–14.6 years) in the Adolescent Brain Cognitive Development (ABCD) Study completed at least one of three online surveys measuring the impact of the pandemic on their mental health. Data were evaluated in relation to youths\u27 pre-pandemic mental health and ACEs. Results Pre-pandemic ACE history significantly predicted poorer mental health across all outcomes and greater COVID-19–related stress and impact of fears on well-being. Youths reported improved mental health during the pandemic (from May to August 2020). While reporting similar levels of mental health, youths from minoritized racial-ethnic backgrounds had elevated COVID-19–related worry, stress, and impact on well-being. Race and ethnicity generally did not moderate ACE effects. Older youths, girls, and those with greater pre-pandemic internalizing symptoms also reported greater mental health symptoms. Conclusions Youths who experienced greater childhood adversity reported greater negative affect and COVID-19–related distress during the pandemic. Although they reported generally better mood, Asian American, Black, and multiracial youths reported greater COVID-19–related distress and experienced COVID-19–related discrimination compared with non-Hispanic White youths, highlighting potential health disparities

    Sex matters during adolescence: Testosterone-related cortical thickness maturation differs between boys and girls

    Get PDF
    Age-related changes in cortical thickness have been observed during adolescence, including thinning in frontal and parietal cortices, and thickening in the lateral temporal lobes. Studies have shown sex differences in hormone-related brain maturation when boys and girls are age-matched, however, because girls mature 1-2 years earlier than boys, these sex differences could be confounded by pubertal maturation. To address puberty effects directly, this study assessed sex differences in testosterone-related cortical maturation by studying 85 boys and girls in a narrow age range and matched on sexual maturity. We expected that testosterone-by-sex interactions on cortical thickness would be observed in brain regions known from the animal literature to be high in androgen receptors. We found sex differences in associations between circulating testosterone and thickness in left inferior parietal lobule, middle temporal gyrus, calcarine sulcus, and right lingual gyrus, all regions known to be high in androgen receptors. Visual areas increased with testosterone in boys, but decreased in girls. All other regions were more impacted by testosterone levels in girls than boys. The regional pattern of sex-by-testosterone interactions may have implications for understanding sex differences in behavior and adolescent-onset neuropsychiatric disorders. © 2012 Bramen et al
    • …
    corecore